Ejercicios 4º Año ESTEQUIOMETRÍA

Prof. Noemí Porcile

1) El agua puede formarse en forma explosiva a partir de dihidrógeno gas, dioxígeno gas y una chispa. La ecuación química correspondiente a dicho proceso es:

$$2 H_{2(g)} + O_{2(g)} \longrightarrow 2 H_{2}O_{(1)}$$

Si se desean producir 10 mol de agua:

- a) ¿qué cantidad química de dioxígeno se precisa?
- b) ¿que masa de H₂ se consume?
- 2) El alcohol etílico, además de ser el utilizado en las bebidas alcohólicas con todos los daños que ocasiona, es usado como iniciador del fuego debido a su fácil inflamabilidad. Cuando se realiza la combustión completa de 1 mol de etanol se desprenden 1366,7 KJ

$$C_2H_5OH_{(1)} + 3O_{2(g)} + 3H_2O_{(1)} + 1366,7 Kj$$

Si se queman mediante combustión completa 4 mol de etanol indica:

- a- Cantidad de calor liberado.
- b- Cantidad química (mol) de O₂ necesaria.
- c- Masa de agua producida.
- 3) Las sales pueden obtenerse mediante reacciones de neutralización ácido-base, por ejemplo, el ácido fosfórico (H_3PO_4) contenido en las bebidas cola, podría neutralizarse con una base como el hidróxido de sodio:

$$H_3PO_{4(aq)} + 3 NaOH_{(aq)} \longrightarrow Na_3PO_{4(aq)} + 3 H_2O_{(1)}$$

Lectura de la ecuación química: 1 mol de ácido fosfórico acuoso y 3 mol de hidróxido de sodio acuoso reaccionan para formar, 1 mol de fosfato de sodio acuoso y 3 mol de agua líquida.

- a) Completa un cuadro donde se muestren las relaciones de cantidad química y de masa.
- b) Si se dispone de 9 mol de NaOH ¿cuántos mol de ácido se pueden neutralizar?
- c) ¿Qué cantidad química (mol) de agua se producen cuando reaccionan 245g de ácido fosfórico?
- 4) El contenido de las garrafas de supergas es fundamentalmente butano y propano licuados. Suponiendo que tenemos 13 Kg sólo de $C_4 H_{10}$ (butano), a) calcular la masa de agua producida, b) la cantidad química de dioxígeno gaseoso consumido y c)la masa de dióxido de carbono liberado al ambiente cuando se produce la combustión completa de dicho contenido.

RESPUESTAS

- 1) a) $n = 5 \text{ mol } O_2$ b) Como también se consumen 10 mol de H_2 y su masa molar es de 2,0 g/mol, la masa total es de: 10 mol x 2,0 g/mol = 20 g de dihidrógeno.
- 2) a) Q = 5466,8 KJ b) n = 12 mol de O₂ c) m = 12mol H₂O X 18,0 g/mol = 216g de H₂O

3)	$H_3PO_{4(aq)}$ +	3 NaOH (aq)	Na ₃ PO _{4 (aq)}	$+ 3 H_2 O_{(1)}$
n(mol)	1 mol	3mol	1mol	3mol
m(g)	98,0 g	120,0 g	164,0 g	54, 0g

(Por razones de espacio no están todos los planteos que van en el cuadro).

masa de reactivos =98.0 g + 120.0 g = 218.0 g

masa de productos = 164.0 g + 54.0 g = 218.0 g La masa se conserva, $\Delta m = 0$

masa molar $H_3PO_4 = 98,0 \text{ g/mol}$ masa molar NaOH = 40,0 g/mol masa molar $NaPO_4 = 164,0 \text{ g/mol}$ masa molar $H_2O = 18,0 \text{ g/mol}$

- b) Se pueden neutralizar 3 mol de ácido.
- c) Cantidad química (mol) = masa (g) / masa molar (g/mol)

n de $H_3PO_4 = 245g$ dividido 98,0g/mol = 2,5 mol de ácido fosfórico, como 1 mol del ácido producen 3 mol de agua planteando una regla de tres hallamos n de agua = **7,5 mol de H_2O**

4) a)
$$C_4H_{10(g)} + 13/2$$
 $O_2 \rightarrow 4$ $CO_{2(g)} + 5$ $H_2O(1) + Q$ masa molar de butano = 58,0 g/mol

n (butano) = 13000g / 58,0_{g/mol} = 224,1mol de butano; n (agua) = 1120,5 mol de agua; **m(agua)** = **20169g** o sea **20 Kg** (Considerando la densidad del agua = 1, 0 g/mL se liberan al ambiente 20 litros de agua, ¡vaya humedad se va a producir, da ahí los hongos que pueden crecer en el techo donde se condensará esta agua!)

b) $n = 1457 \text{ mol de } O_2$ c) $m = 39448 \text{ g de } CO_2$ aproximadamente **40 kg**, ¿contriburá al aumento del efecto invernadero