

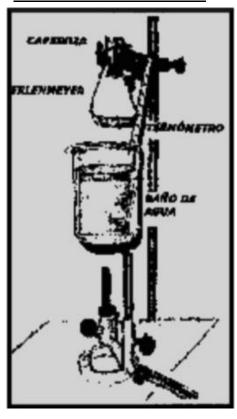
PRÁCTICO Nº 7 MASA MOLAR MOLECULAR DE UN VAPOR CONDENSABLE

OBJETIVO: Determinar la masa molar molecular de una sustancia (problema) volátil.

FUNDAMENTO TEÓRICO:

El método consiste en vaporizar una sustancia en un matraz Erlenmeyer a través de un baño de agua. Se calienta hasta vaporizar por completo la sustancia logrando que el vapor llene totalmente la capacidad del matraz.

La sustancia: -Debe vaporizarse sin descomponerse en las condiciones de trabajo.


- -Debe tener elevada masa molar.
- -No debe ser tóxica ya que sus vapores pasarán al ambiente.
- Temperatura de ebullición menor a la del agua.

SUSTANCIAS Y MATERIALES:

Sustancia problema Soporte con pinzas Trípode y tela metálica Papel de aluminio Alfiler Matraz Erlenmeyer Pipeta Pasteur Termómetro Balanza al centigramo

Probeta de 10 mL Agua Vaso de Bohemia de 500 mL

TÉCNICA EXPERIMENTAL:

- 1- Se prepara un cuadradito de papel aluminio de unos 4 cm de lado y se fabrica una caperuza para tapar la boca del matraz (colocar el papel sobre la boca y adaptarlo al cuello del matraz) y con un alfiler se hace un agujero lo más diminuto posible en el centro de la caperuza.
- **2-** En la balanza al centigramo se determina la masa del matraz <u>limpio y seco</u> con su caperuza. **Anotar el dato en el cuadro de valores adjunto**.
- **3-** Medir con probeta unos 3,0 mL de sustancia problema, colocarlos dentro del matraz y volver a tapar con la caperuza bien ajustada.
- **4-** Se sujeta el matraz al soporte, y se suspende dentro del vaso de Bohemia que está apoyado en el trípode con tela metálica.

- **5.** Se agrega agua al vaso, llenándolo de modo que el agua cubra lo más posible al matraz que contiene la sustancia problema.
- **6-** Calentar moderadamente observando la evaporación de la sustancia problema, agitando constantemente con varilla de vidrio.
- **7-** Cuando se haya evaporado la última gota de sustancia problema, se retira el matraz del baño de agua y se deja suspendido en el soporte hasta que se enfríe a temperatura ambiente.
- **8-** <u>Simultáneamente al paso anterior</u>, se mide la temperatura del baño de agua y la presión atmosférica. *Anotar los datos en el cuadro de valores adjunto.*
- **9-** Una vez que el matraz esté frío, en la balanza se determina la masa del matraz con el líquido condensado y la caperuza. **Anotar el dato en el cuadro de valores adjunto.**
- **10-** El volumen del matraz se lo indicará su profesor. *Anotar el dato en el cuadro de valores adjunto.*
- **11-** Enjuague el material y deje limpia y ordenada la mesa de trabajo.

CUADRO DE VALORES EXPERIMENTALES:

Los datos deben ser anotados con sus respectivas incertidumbres

Masa del matraz vacío con caperuza	
Temperatura del baño de agua	
Presión atmosférica	
Volumen del matraz	
Masa del matraz con caperuza y líquido condensado	

POST LABORATORIO:

CÁLCULOS

- 1- Calcular la masa molar molecular de la sustancia problema.
- 2 Realizar el cálculo de la incertidumbre y expresar la masa molar correctamente.

CUESTIONARIO:

- a) ¿Por qué es necesario realizar un orificio en la caperuza?
- b) ¿Por qué debe vaporizarse todo el líquido problema contenido en el matraz?
- c) ¿Qué limitaciones presenta este método?

EJERCICIO:

Los haluros de alquilo son en general líquidos volátiles y sus vapores son fácilmente condensables. En el laboratorio se borraron las etiquetas de dos frascos, uno contenía CH_2Cl_2 y el otro CCl_4 . Para averiguar cuál es cuál se experimentó para determinar su masa molar molecular, obteniendo los siguientes datos.

Masa inicial	(47,70 ± 0,01) g
Masa final	(48,25 ± 0,01) g
Temperatura del baño	(77,5 ± 0,5)°C
Volumen del matraz	(100 ± 2) mL
Presión atmosférica	(761 ± 1) torr

¿Cuál es este haluro? Justifique su respuesta con los cálculos correspondientes.